Process Mining in Non-Stationary Environments
نویسندگان
چکیده
Process Mining uses event logs to discover and analyse business processes, typically assumed to be static. However as businesses adapt to change, processes can be expected to change. Since one application of process mining is ensuring conformance to prescribed processes or rules, timely detection of change is important. We consider process mining in such non-stationary environments and show that using a probabilistic view of processes, timely and confident detection of change is possible.
منابع مشابه
مکان یابی وفقی موبایل به روش آزمون باقیمانده
Determination of mobile localization with time of arrival (TOA) signal is a requirement in cellular mobile communication. In some of the previous methods, localization with non-line-of-sight (NLOS) paths can lead to large position error. Also for simplicity, in most simulations suppose non stationary actual environments as stationary. This paper proposes (residual test + recursive least square)...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملSynchrosqueezing-based Transform and its Application in Seismic Data Analysis
Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some resear...
متن کاملEnsemble learning for data stream analysis: A survey
In many applications of information systems learning algorithms have to act in dynamic environments where data are collected in the form of transient data streams. Compared to static data mining, processing streams imposes new computational requirements for algorithms to incrementally process incoming examples while using limited memory and time. Furthermore, due to the non-stationary character...
متن کامل